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Abstract

We study contact tracing in a new macro-epidemiological model with asymptomatic transmission
and limited testing capacity. Contact tracing is a testing strategy that aims to reconstruct the infection
chain of newly symptomatic agents. This strategy may be unsuccessful because of an externality
leading agents to expand their interactions at rates exceeding policymakers’ ability to test all the
traced contacts. Complementing contact tracing with timely deployed containment measures (e.g.,
social distancing or a tighter quarantine policy) corrects this externality and delivers outcomes that
are remarkably similar to the benchmark case where tests are unlimited. We provide theoretical
underpinnings to the risk of becoming infected in macro-epidemiological models. Our methodology
to reconstruct infection chains is not affected by curse-of-dimensionality problems. (JEL: E10, D62,
110)

1. Introduction

The outbreak of the COVID-19 pandemic set off a worldwide health and economic
crisis of unprecedented proportions. Quickly expanding the capacity for testing,
isolation, and contact tracing has been suggested by several experts to be a crucial
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step in alleviating the pandemic’s toll on the economy and mortality.! For instance,
South Korea has combined contact tracing, mass testing, and alternative containment
measures to achieve one of the lowest infection rates in the world. Nevertheless, other
countries, such as the U.S., have been considerably less successful, notwithstanding
sizable investments made in contact tracing and mass testing. In this paper, we construct
a macro-epidemiological model with asymptomatic transmission and limited testing
capacity to study (i) the social value of a technology enabling policymakers to trace
the close contacts of confirmed infected cases, (ii) why this technology may fall short
of delivering the expected outcome, and (iii) how contact tracing can be combined
with alternative containment policies to effectively control a pandemic.

We model contact tracing as a testing strategy that aims to reconstruct the newly
symptomatic cases’ infection chain—thatis, the network of interactions that led a newly
symptomatic case to become infected or to infect other agents. This reconstruction
allows the policymakers to decide who to test. The objective of testing is to detect
and quarantine as many asymptomatic spreaders as possible. The epidemiological
parameters of the model and the availability of tests are calibrated to match the U.S.
data during the COVID-19 pandemic.

Contact tracing can be unsuccessful because of an externality leading agents to
expand economic and social interactions at rates exceeding policymakers’ ability to
trace, test, and isolate the close contacts of confirmed cases. Complementing contact
tracing with timely deployed containment policies (e.g., social distancing or a tighter
quarantine policy) allows policymakers to buy time to expand the tracing and testing
scale so as to preserve the viability of the tracing and testing system. Our calibrated
model predicts that U.S. testing availability during the COVID-19 pandemic was
insufficient to ensure effective contract tracing without other containment policies.

If this externality is addressed properly by policymakers, contact tracing lowers
the threshold number of infected agents needed to reach herd immunity by leveraging
the information contained in the reconstructed infection chain of confirmed cases. In
addition, the reconstruction of the confirmed cases’ infection channel is critical to
enable contact tracing to effectively detect asymptomatic spreaders at the early stages
of a pandemic when there are only a few spreaders.” In virtue of these two attributes,
contact tracing mitigates both the consumption drop due to the pandemic and its death
toll, allowing policymakers to move beyond the traditional trade-off between saving
human lives and mitigating the economic costs of the pandemic.

We show that preserving the functionality of contact tracing is optimal. When
we solve the optimal social distancing problem, we find that the planner wants to

1. For instance, Dr. Anthony Fauci, the then director of the National Institute of Allergy and Infectious
Diseases, said in an interview with Dr. Howard Bauchner, the editor of the Journal of the American
Medical Association, in April 2020 that “The keys [to a successful response] are to make sure that we
have in place the things that were not in place in January, that we have the capability of mobilizing
identification—testing—identification, isolation, contact tracing.”

2. This prediction is in line with empirical findings by Fetzer and Graeber (2021), who show quasi-
experimental evidence that contact tracing is very effective in containing the spread of the virus.
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tighten social distancing restrictions right before the tracing and testing system would
collapse. Scaling up social distancing measures in that period corrects the externality
that threatens the smooth functioning of contact tracing and, in doing so, leads to
economic and health outcomes that are remarkably similar to the benchmark case
where tests are assumed to be unlimited.

How critical is it for policymakers to be able to run contact tracing smoothly during
a pandemic? Our calibrated model predicts that the social value of being endowed with
a viable contact tracing and testing system is about $8.7 trillion. Given that a tracing
technology is arguably cheap to develop for most countries, this result suggests that it
may be cost-effective for policymakers to invest in such a technology, even if epidemics
are expected to be rather infrequent events. A more comprehensive tracing technology
enabling policymakers to trace contacts for one additional week further increases social
welfare by $1.5 trillion.

Contact tracing has been used to control the spread of a long list of lethal diseases,
such as tuberculosis, measles, sexually transmitted infections (including syphilis and
HIV), blood-borne infections, Ebola, HIN1 (swine flu), avian influenza, SARS-CoV
(SARS), and SARS-CoV-2 (COVID-19).? However, formally modeling contact tracing
is very hard, as the number of contacts established by an infected subject quickly
explodes as the number of past periods considered increases.

We solve this dimensionality problem by modeling the probability that a susceptible
subject entertains a number of economic interactions with the pool of asymptomatic
infected agents as a sequence of Bernoulli trials. The number of trials depends on
how much susceptible agents consume (work), and the probability of success (i.e.,
meeting with an asymptomatic infected subject) is assumed to depend on the share of
consumption (work) of asymptomatic infected people. It follows that the probability
for a susceptible agent to have met a certain number of infected agents is a binomial
distribution. This binomial distribution allows us to parsimoniously characterize the
endogenous probability of a susceptible agent becoming infected in a given period. This
probability turns out to be isomorphic to that in macro-epidemiological models (e.g.,
Eichenbaum, Rebelo, and Trabandt 2021), thereby providing theoretical underpinnings
to that probability, which is typically assumed in those models.* Furthermore, this
binomial distribution summarizes all of the necessary information to reconstruct the
infection chains in our model, which is key to pinning down agents’ probabilities of
being traced and tested. This methodology to reconstruct the history of interactions
relevant for contact tracing is general and can be applied to macro-epidemiological
models with multiple sectors or heterogeneous agents.”

3. Contact tracing was originally proposed in 1937 by Surgeon General Thomas Parran for the control
of syphilis in the U.S. and was implemented to control its spread in the following years (Parran 1937).

4. In the special case in which the virus cannot be spread through consumption and labor interactions,
the infection probability is isomorphic to the canonical SIR model of Kermack and McKendrick (1927).

5. See Guerrieri et al. (2022) for an example of multisectoral models to study how an epidemic and social
distancing affect aggregate demand and supply. See Kaplan, Moll, and Violante (2020) for an example of
macro-epidemiological models with income and wealth inequalities.
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Our paper belongs to the macro-epidemiological literature. This literature is quickly
growing in many different directions. The directions more closely related to our paper
are as follows: analyses of the trade-off between saving human lives and mitigating
the recession (Gourinchas 2020; Hall, Jones, and Klenow 2020); models to study
optimal social distancing (Atkeson 2020; Bethune and Korinek 2020; Alvarez, Argente,
and Lippi 2021; Eichenbaum, Rebelo, and Trabandt 2021; Farboodi, Jarosch, and
Shimer 2021; Moser and Yared 2022; Piguillem and Shi 2022); models to study more
targeted and smarter policies, such as testing or targeted quarantines, as alternatives to
indiscriminate social distancing measures (Akbarpour et al. 2020; Atkeson et al. 2020;
Azzimonti et al. 2020; Baqgaee et al. 2020a; Bognanni et al. 2020; Brotherhood et al.
2020; Favero, Ichino, and Rustichini 2020; Galeotti, Steiner, and Surico 2020; Glover
et al. 2020; Acemoglu et al. 2021; Aum, Lee, and Shin 2021; Chari, Kirpalani, and
Phelan 2021; Berger et al. 2022; Eichenbaum, Rebelo, and Trabandt 2022; Hornstein
2022; Krueger, Uhlig, and Xie 2022); studies of the distributional consequences of
containment policies (Kaplan, Moll, and Violante 2020; Hacioglu-Hoke, Kanzig, and
Surico 2021; Lee, Park, and Shin 2021); and models to assess the efficacy of public
policies—not based on tracing and testing—in controlling HIV (Greenwood et al.
2019).

The implementation of contact tracing is plagued by several bottlenecks. An
important part of our analysis is to show that one potential bottleneck—that is, the
limited availability of tests—may lead to the demise of the tracing and testing system
and that this event would worsen the pandemic’s economic and health outcomes
considerably. We study a number of mitigation policies (optimal social distancing,
a tighter quarantine policy, and a mask-wearing mandate) that can be deployed in a
timely manner to shore up the resilience of the tracing and testing system. The macro-
epidemiological literature has studied the dynamic complementarities of optimal social
distancing with other factors: the limited capacity of the health system (e.g., Loertscher
and Muir 2021), the arrival time of an effective vaccine (e.g., Iverson, Karp, and Peri
2022), and the arrival of an effective technology to test and quarantine infected subjects
(e.g., Brotherhood et al. 2020).

Given the hurdles to formally modeling the infection chain of confirmed cases, all
the papers we know take a reduced-form approach to contact tracing (e.g., Alvarez,
Argente, and Lippi 2021; Piguillem and Shi 2022). Typically in these papers, a fraction
of agents whose health status is unknown become tested by the government in every
period.® Modeling contact tracing by taking into account the existence of infection
chains as we do has three main advantages. First, the central result that a well-
functioning contact tracing allows policymakers to improve both economic and health
outcomes of a pandemics hinges upon the enhanced ability of contact tracing of
successfully detecting asymptomatic spreaders, even at the onset of a pandemic when
itis very hard to do so. We find this result because we take into account the existence of

6. Chari, Kirpalani, and Phelan (2021) study targeted testing assuming that infected agents are more
likely to receive a signal about their health status. They interpret the signal as the outcome of a test.
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infection chains. Second, our approach is preferable when one is concerned about the
Lucas critique, which would arise, for instance, if one studies the efficacy of contact
tracing under a mutating virus (e.g., a virus mutation resulting in more asymptomatic
infections). Third, our structural analysis of contact tracing helps to calibrate smart
testing in papers that take a more reduced-form approach.

Our paper is also related to the epidemiological literature that studies contact
tracing. Hellewell et al. (2020) model contact tracing based on a branching process,
which uses a negative binomial distribution to keep track of the number of secondary
infections that a person infected with the virus could potentially produce (see also
e.g., Ferretti et al. 2020). In our analysis, the binomial distribution is used to
model the probability that an agent meets a number of times with asymptomatic
infected subjects while consuming and working. This different approach has important
implications: First, the probability for an agent to be traced is endogenous, depending
on their consumption and labor decisions. Second, our binomial approach allows
us to provide theoretical underpinnings to the infection rate in SIR and Macro-SIR
models.

2. The Model

The model economy is populated by agents who consume and work, and firms that hire
labor N, from agents in a competitive market and produce output according to a linear
production function in labor and productivity parameter A. The government levies
taxes on consumption and remits transfers to agents. Labor and output are traded in
competitive markets. Health authorities conduct contact tracing, administer tests, and
can quarantine agents. Agents become infected through interactions with other agents.
Following Eichenbaum, Rebelo, and Trabandt (2021), we assume there are three types
of interactions through which the virus spreads out: consumption interactions, work
interactions, and other interactions independent of agents’ decisions.

Every period is organized as follows: First, agents consume, work, and engage in
other interactions. Second, agents’ health status can change: Agents can get infected
or infected agents can recover or die. Third, health officials can administer tests. Tests
deliver a binary outcome: positive or negative. Tests do not reveal if an agent has never
been infected or has recovered.

There are six types of agents, who differ in their health status. The first type includes
susceptible agents who have not contracted the disease, are not carriers, and are not
immune. Infected agents can be divided into three types: Untested asymptomatic agents
if they have not shown symptoms and have not tested positive, tested-positive agents if
they are asymptomatic but they have tested positive, and symptomatic infected agents if
they have shown symptoms regardless of whether they have previously tested positive.
The remaining two types are the recovered agents, who have developed immunity.
They are the observed recovered agents, who have shown symptoms or have tested
positive and the unobserved recovered agents, who have recovered without having
ever shown any symptoms or having ever tested positive.
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Observability of Types’ Health Status.  Since the untested asymptomatic individuals
are assumed not to show any symptoms of the disease, their health status is not
observed by anyone in the model. The health status of susceptible agents and that of
unobserved recovered subjects is also not observed even if they got tested at the end
of the previous period. This is because tests only say whether the tested individual is
currently infected or not. The health status of tested-positive, symptomatic infected,
and observed recovered agents is publicly observed.

Quarantine. The tested-positive and the symptomatic subjects have their health status
revealed and the health authorities immediately quarantine them.” Being quarantined
means two things. First, in quarantine consumption and labor decisions are subject
to restrictions, which are modeled as a consumption tax. Second, quarantined agents
are isolated from other subjects and cannot infect anyone. Note that we use the word
quarantine to mean a containment policy targeted to a single subject or a subset
of subjects who have been uncovered by the government as potentially capable of
spreading the virus. Thus, quarantine is different from social distancing, which refers
to an economy-wide containment measure, affecting all subjects.

Meeting Probabilities. The virus in our model spreads out because susceptible agents
may meet with untested asymptomatic agents while consuming, working, or engaging
in other non-economic activities.® So, it is particularly important to characterize the
probability that a susceptible individual meets with untested asymptomatic subjects.
We make the following assumption to characterize this probability.

ASSUMPTION 1. Every random interaction of an agent with a set of agents of a
specified type is modeled as a Bernoulli trial.

It then follows that the probability that an individual, who randomly meets n > 0
other agents in a period, meets k-times with agents of a certain type is given by the
binomial distribution B(k, n, p) = (Z) Pk - p)("_k ) where p is the probability of
meeting with agents of a certain type in one random meeting. In the Bernoullian jargon,
there will be n random trials and in each of these trials the individual meets (success)
or does not meet (failure) with a specified group of people. We make the following
assumption about the probability of meeting with a specified group.

ASSUMPTION 2. The probability for an agent to meet with agents of a certain type
(a) in one random consumption interaction is given by the share of consumption of
the agents of that type relative to the consumption of non-quarantined agents;

(b) in one random working interaction is given by the share of hours worked by the
agents of that type relative to the hours worked by non-quarantined agents;

7. Untested asymptomatic agents are not quarantined because health authorities cannot distinguish them.

8. Other infected (tested-positive and symptomatic) people are quarantined and cannot infect anyone.
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(c) in one random interaction not associated with either consumption or work is given
by the share of agents of that type relative to the population of non-quarantined
agents.

For instance, the probability of meeting an untested asymptomatic subject in
one consumption interaction is given by the size of the consumption of untested
asymptomatic people relative to aggregate consumption, in symbols, CtA /C,, where
C,A denotes total consumption of the untested asymptomatic agents and C, stands for
the aggregate consumption of non-quarantined agents. Analogously, the probability
for a worker to meet an untested asymptomatic worker in 1 hour of work is assumed
to be N,A/N,, where N,A denotes total labor worked by the untested asymptomatic
group and N, stands for aggregate labor of non-quarantined agents. The probability for
an individual to meet with an untested asymptomatic agent in one non-consumption,
non-labor interaction is assumed to be equal to the share of untested asymptomatic
agents: ItA /POP,, where ItA denotes the size of the group of individuals who are
untested asymptomatic and POP, stands for the population size of non-quarantined
agents.

ASSUMPTION 3. An individual of health status { who consumes cf units of goods,
works 7; number of hours at time  makes ¢~ : ¢; = N U {0} and ¢, : nj = N U {0},
respectively, number of interactions, where N U {0} denotes the set of natural numbers
including zero. The same individual also makes a constant number of ¢, interactions
when engaging in activities other than consumption and labor.

It follows that the total number of interactions a susceptible individual entertains to
consume c;, work n}, and enjoy other activities, is given by ¢ (¢}) + ¢ (n}) + ¢o.
This gives us the number of Bernoulli trials due to these three activities in the time unit.
We can think of the mappings ¢~ and ¢, as monotonically increasing step functions.

Combining all these assumptions allows us to write the probability for a susceptible
individual to meet k times with the set of asymptomatic subjects while consuming an
amount ¢; of goods as follows:

k o, (c5)—k
_ s CtA _ [ %c () CtA CtA o
fc,t(k)=3(k’¢c(c,)’—ct)—( . )(_C,) (1__0, ., (1)

k < ¢c(c}). We can analogously derive the probability for a susceptible individual
to meet k-times with the asymptomatic subjects while working an amount nj of
hours

k oy @H—k
_ o VY _ (en D) (N R
Fui (k):B(k,goN(n,x N,)‘( ) - o)
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k < @y (n}). Finally, the probability for any person to meet with people in the
asymptomatic group k times while engaging in other types of interactions is

k o, —k
_ ItA %o ItA ItA ©
fouak) =B (k’wo’ POPt) N ( k | \ rop, = POP, ’ )

k < ¢. Let us denote the number of random interactions due to consumption, work,
and other activitiesas k., k,,, and k ,, respectively. The joint probability for a susceptible
individual to have a triplet of random meetings (k.. k,,, k ,) with untested asymptomatic
people is defined as follows:

Silke kykog) = e (k) - fui(ky) - fo () “4)

ASSUMPTION 4. Conditional on meeting with an untested asymptomatic individual,
a susceptible agent will become infected with probability ¢ € (0, 1).

Since this probability of getting infected t is assumed to be the same across the three
different types of interactions (consumption, work, or others), a susceptible individual
entertaining k. + k, + k, interactions with asymptomatic individuals will become
infected with probability 1 — (1 — )% %, K, that is, one minus the probability that
none of these interactions turns out to be infectious, that is, (1 — r)kc+kn tk, .

We can characterize the average probability for a susceptible individual to get
infected conditional on consuming ¢; and working n7 as follows:

o)) oy} o,

=Y > Y u-a-okthth Lk, k,.k,). 5)

k,=0 k,=0 k,=0

where f,(k.,k,,k,) denotes the joint binomial distribution defined in equation (4).
The infection rate 7, can be approximated to obtain

H cA NA A
T, ~E|@ cf (é) + ¢, -n} (TZI) + 90 (PO;t) , (6)
where the coefficient 8 = —In(1 —7) (1 — t)lchEnHEO, with (k. k,,k,) denote

the average number of interactions at steady state. Online Appendix E derives the
approximation.

The approximated infection rate 7, in equation (6) nests the rate in the canonical SIR
model as the special case in which consumption and labor interactions do not transmit
the virus. It is also isomorphic to other leading macro-epidemiological models, in
which this rate is assumed (e.g., Eichenbaum, Rebelo, and Trabandt 2021). Since the
infection rate in equation (6) stems from the choice of modeling economic interactions
as binomial trials (Assumptions 1-4), our paper provides theoretical underpinnings to
the infection rate used in those models.
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Agents with Unknown Health Status. As discussed earlier, susceptible, untested
asymptomatic, and unobserved recovered individuals do not know their health status.
To keep the model tractable, we assume that these agents make consumption and labor
decisions in the belief that they have never been infected and thereby are susceptible.
While this assumption has a behavioral flavor, it has minimal implications for our
conclusions because our analysis is primarily focused on dynamics at the beginning of
a pandemic when the economy is far away from achieving herd immunity.® Conditional
on the belief of having never been infected, agents’ beliefs about future changes in
their health status are model consistent. It follows that the agents who do not know
their health status choose their consumption ¢}, and labor 1§ so as to maximize

VS = max u(c;.nj) + B [(1 - Tt)Vtﬁ—l T {ﬂg,t%il + (1 ”Pt) Vt+1}]

Cr oMy
(7
where the utility function u(c,,n,) =Inc, —(6/(1/ r]))nl/ 7 and B denotes the
discount factor. We denoted all the variables in equation (7) with the superscript S
because these agents believe they are susceptible.
These agents expect to be infected with probability 7,, which is defined in
equation (5). Conditional on this event, the agents expect with probability ﬂ};t to

test positive at the end of period ¢ and thereby to receive the utility VP ", of the tested-
positive agents in period ¢ + 1. This value function will be defined in Section 2. With
probability (1 — JT; ;), the agents expect to become untested asymptomatic and receive

the utility V4 /1> which, in period ¢, is given by
Vit =u(@. i)

+B [”15 SRV + (1 — g — 7R) (”g,tthj—l +(1- )Vz+1)]
®)

where ¢; and 7] denote the optimal solution to the problem in equation (7) since
untested asymptomatic agents do not know their health status. Conditional on becoming
untested asymptomatic in period ¢ + 1, they expect to become infected symptomatic
in the next period with probability 7,5 and receive utility Vzliz —defined in Section 2.
They expect to become unobserved recovered with probability 75 and to receive
the utility V,5%,, which is defined for the period  as V,"% = u(cf, nf) + BV,5R . The
unobserved recovered agents have never shown any symptoms and hence do not know
their health status. Hence, they choose consumption and labor by solving the problem
in equation (7). If the untested asymptomatic agents neither develop symptoms nor
recover, then they expect to test positive at the end of period ¢ + 1 with probability

ﬂﬁ,t 4 and receive the utility function Vti2 in the next period. The probabilities of

9. Solving the imperfect information problem under full rationality requires keeping track of when agents
were tested last and therefore is very cumbersome.
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testing positive for a newly infected agent, n}T,J, and for an asymptomatic agent, 7 ﬁ,z’
are characterized in Section 3.

The problem is subject to the budget constraint for non-quarantined agents:
1+ ,ui,)c, = u)t ny + 'L, where ,wf,, denotes a tax on consumption proxying
the effects of a government-imposed social distancing on consumption and labor.
By reducing consumption and labor, social distancing curtails agents’ economic
interactions. In doing so, social distancing reduces the probability to become infected
(t,) and, as we shall show, the number of traceable contacts health authorities have
to test at the end of the period. The consumption tax revenue is rebated to the agents
the tax is levied on, '/ The equilibrium wage w? equals the agent’s labor marginal
productivity.

Tested-Positive Agents. Tested-positive agents are individuals who know they are
infected even though they do not have symptoms. They choose consumption, c,P and
labor n}" 50 as to maximize
P _ P P
Vi = max u (c, N ) + B [771s SRV + (- _JTR)VtJrl]’ ©)

P
Ct g

where the tested-positive individual can develop symptoms with probability ;¢ and,
in this case, the individual will receive the utility V’S 11 in the next period. The health
status of the tested-positive individual can also change to observed recovered with
probability m , and, in this case, the individual will receive the utility Vtofl in the next
period. If the tested-positive individual neither develops symptoms nor recovers, they
will remain in their current status. Tested-positive agents are subject to quarantine
until they recover. Thus, the maximization problem for these agents is subject to
the following budget constraint: (1 + ,ucQ + a,uf,,)c, =wlfnl + F,Q, where ,ucQ
proxies the effects of imposing a quarantine on individuals’ consumption and labor
decisions. Social distancing is assumed to affect consumption of quarantined subjects
as well. The parameter o € (0, 1) controls the additional effects of social distancing
on quarantined agents’ consumption. The tax is rebated to them, I" ,Q

Infected Symptomatic Agents. As the symptoms of the disease develop, agents
observe their health status, which becomes infected symptomatic. An infected
symptomatic subject chooses consumption ¢/5 and n'® so as to maximize

VP = manu(ct ) + BrpVE + (1 =7 —mp) VL] (10)

o't

subject to the budget constraint for quarantined subjects, which is the same as for
the tested-positive agents. The probability m, denotes the probability that the health
status of the infected symptomatic individual changes to observed recovered and
the individual will receive V 41 in the next period. The probability 7/, denotes the
probability that the infected symptomatic individual dies and, in this case, they will
get zero utility forever. If neither event happens, the infected symptomatic individual
will not change their health status in the next period. The equilibrium wage paid to the
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agents is determined by the agent’s marginal productivity of labor, which is assumed
to be lower when the symptoms of the disease have developed. This penalty on labor
productivity is given by ¢ < 1.

Observed Recovered Agents. Observed recovered agents are agents who know they
have been infected at some point in the past either because they tested positive or they
showed the symptoms of the disease. Since they have become immune to the virus,
their health status will never change again and their decision problem reads
OR _ OR ,OR OR
VR = (I)II}a)(()Ru(Ct ) + BN, (1)

t o't

subject to the same budget constraint as for the non-quarantined subjects.

The Government Budget Constraint. The government balances its budget in every
period by satisfying the conditions

i C ra(cl+cl)| =tk (s, + 12+ R+ RO+ (1) (15 + 1)),
(12)

pl.cF=rf.15, and ul2.cf=r12.P, (13)

where we denote the share of susceptible individuals with S,, the share of untested
asymptomatic individuals with / tA, the share of symptomatic infected individuals [ ,S ,
the share of tested-positive individuals with P,, the share of unobserved recovered with
RY, and the share of observed recovered individuals with RC. Recall that C, denotes
consumption of non-quarantined agents. C/* = ¢/15 and Cf = ¢} P, stand for total
consumption of the infected symptomatic agents and that of the tested-positive agents,
respectively. There is no fiscal redistribution. The revenues of the social distancing and
quarantine taxes are rebated to the agents these taxes are levied on.'”

Dynamics of Agents’ Types. We now describe the evolution of the six types of agents.
The law of motion for the share of susceptible agents reads S, , | = S, — T, where T;
denotes the share of newly infected subjects in period ¢. This share is defined using
the law of large numbers as follows: T, = 7, - S,, where 1, is the expected probability
for susceptible individuals to become infected—defined in equation (5).

The size of untested asymptomatic agents evolves according to the law of motion

Itf-li—l =(1- ”Iz,t)Tt +(1- ”é,t)(l s — w1, (14)

This set of agents is given by those who were untested asymptomatic ,A at the end of
the previous period and have not developed symptoms, recovered, or tested positive

10. We abstract from fiscal policy in this study. Bianchi, Faccini, and Melosi (2020), Mitman and
Rabinovich (2021), and Hagedorn and Mitman (2020) study how fiscal policy should respond to pandemic
recessions.
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at the end of the current period. Moreover, subjects who have become infected in this
period, T}, and have not tested positive will also join the set of untested asymptomatic
subjects in the next period.

The pool of tested positive subjects is given by

Py =0-mg—mg)P, + ”g,th + ”g,z(l — s — R (15)

Tested-positive subjects in the current period are people who had this health status at
the end of the previous period and have neither developed symptoms nor recovered.
The infected agents who have just tested positive also join the tested-positive pool.

The pool of infected symptomatic people is: Iti—l =(l—-np—m D)I,S +
(1 ,A + P,). A fraction of infected symptomatic agents recovers or dies in the period
and the remainder remain infected symptomatic. Untested asymptomatic and tested-
positive agents can develop symptoms and become symptomatic infected subjects.

The share of unobserved recovered evolves as follows: RtU 1= RY + mwpIA. This
health status is an absorbing state and increases with the set of untested asymptomatic
agents who recover in every period. The share of observed recovered evolves as follows:
Rt0+] =R +n r(P, + 15). This health status is also an absorbing state and the
magnitude of this set of agents increases as tested-positive and infected symptomatic
agents recover. The measure of population is given by the sum of these six groups.
Note that the population size may vary because infected people die. The share of agents
who have died by period # + 1is givenby D, ; = D, + wpI5.

The only two variables we have not yet defined are the probability of testing
positive for newly infected agents, ”;,t’ and untested asymptomatic agents, ﬁ,t. The
characterization of these probabilities is the object of the next section.

3. Contact Tracing and Testing

Health officials test subjects whose health status is unknown; that is, susceptible,
untested asymptomatic, and unobserved recovered agents. In our model, an agent can
be infected and remain asymptomatic throughout their entire infection. These agents
are undiscovered spreaders who keep infecting susceptible agents until they recover or
get quarantined because they test positive or become symptomatic. Tests do not reveal
when a positive agent was infected or whether a negative agent is still susceptible to
getting infected or has recovered. Results can be false-negative.

Contact tracing is a testing strategy whose aim is to ex-post reconstruct as much
as possible of the newly symptomatic cases’ infection chain; that is, the network of
interactions that led a newly symptomatic case to become infected or to infect other
agents. How much of the infection chain can be known by health officials defines the
efficiency of the contact tracing technology. We consider two levels of efficiency of the
tracing technology: a technology that allows health officials to trace only those contacts
that have occurred during the current week and a more comprehensive technology that
allows them to trace contacts up to one week back. When we say contact tracing, we
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Period t-2

FIGURE 1. Example of an infection chain. The blue solid circles indicate an asymptomatic person.
The green dashed circles are susceptible or recovered agents. The red lines describe an interaction
that leads to an infection, while the gray lines describe an interaction that does not lead to an infection.

generally refer to the first technology. When we say comprehensive contact tracing or
simply comprehensive tracing, we mean the second technology.

It is useful to resort to a graphical example to illustrate how contact tracing works
in the model. In Figure 1, agent A, who caught the virus in period ¢ — 2, infects agent B
in period ¢ — 1. In the next period, agent A infects further two agents, who are denoted
by C and D. At the same time, agent B also infects agent E. In period ¢, agent A
also met subject Z, who was however infected by subject V. The gray line connecting
subject A and Z means that this was a non-infectious meeting. The other subjects, who
are denoted by dashed green circles, are agents that were not infected by meeting with
one of the untested asymptomatic subjects, who are denoted by blue solid circles.

Let’s assume that subject A turns symptomatic in period ¢. The contact tracing
technology would allow health officials to trace the newly infected subjects C, D, and
Z.. However, subjects B and E, who belong to the same infection chain originated by
subject A, cannot be traced. It is important to note that subject Z does not belong to
agent A’s infection chain as subject Z was infected by subject V. However, subject
Z has randomly met with subject A in period ¢ and is therefore traceable. If the
comprehensive tracing technology is available, then subject B can also be traced.

Let’s suppose that subject B turns symptomatic in period ¢, while subject A is
still untested asymptomatic. The tracing technology would discover subject E. By
allowing subject B’s contacts to be traced in the earlier period ¢ — 1, the comprehensive
technology allows health authorities to find out the asymptomatic spreader A. Since
subject A infected subject B, the detection of subject A is called backward tracing.
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The contact tracing technology does not allow health authorities to trace backward as
it takes at least one period for newly infected subjects to become symptomatic.

It is important to note that the contact tracing technology can catch asymptomatic
agents who went untested in the previous periods only if these agents meet randomly
with a subject who turns symptomatic in the current period. These random meetings
are fairly rare, as we later show. In contrast, the comprehensive technology allows the
health authorities to leverage the infection chain of the newly symptomatic agents to
detect asymptomatic spreaders that were not caught in previous periods. An example
is the backward tracing of agent A when agent B turns symptomatic.

Health authorities could also launch a second round of tests by reconstructing the
network of contacts of those agents who tested positive in the first round. We deal with
this extension in Section 6.

Testing Probabilities. 'The probability of catching a spreader depends on (i) the
probability of tracing this subject; (ii) the tracing and testing capacity in period ¢,
T,, relative to the number of people traceable E,; and (iii) the probability of a false
negative (7 ). As we will show, the efficiency of the tracing technology influences the
probability of being traced and the number of traceable subjects in a given period.

Formally, for a given efficiency of the tracing technology, the probability that a
newly infected subject infected (i = T') or an untested asymptomatic subject (i = A)
tests positive in period ¢ is

Mp, =mg, wp, - (I—mp), i €{T A}, (16)

where the probability ﬂé,t denotes the probability of being traced for a subject of
type i and the probability 77, denotes the probability of being tested conditional on
being traced by the government. As we shall explain, this probability depends on the
tracing and testing capacity Y,, and the number of agents that are traceable E,. This
decomposition implies that a subject has to be traced before being tested. The case in
which all the traced subjects are quarantined is discussed in Section 5.4.

The variable Y, should be interpreted broadly as the intensive margin of tracing
and testing as opposed to the extensive margin, which is determined by the efficiency
of the tracing technology. While the extensive margin affects the number of traceable
agents (ng’t + né,t), the intensive margin, Y,, reflects the government’s capacity to
process all the necessary information to test these traceable contacts and quarantine
those who test positive. Henceforth, we will refer to Y, as testing capacity because this
is how we will calibrate the model. This choice reflects the absence of data regarding
this broader concept of intensive margin in tracing and testing.

Externality and the Collapse of the Testing System. The magnitude of the variable
T, relative to the number of traceable people, E,, plays the role of a critical bottleneck
that can lead to the collapse of the tracing and testing system in our model. Agents fail
to realize that their consumption and labor decisions have externality on the number of
traceable subjects, E,, that health authorities will have to test a few periods later. This
is for two reasons. First, those agents whose health status is unknown do not appreciate
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that as they increase their consumption or labor, the overall amount of interactions in
the economy will increase and, thereby, newly symptomatic agents will end up having
more traceable contacts. Second, untested asymptomatic subjects fail to realize that as
they consume or work more, more people will become infected, raising the number
of newly symptomatic cases in every period. A larger number of newly symptomatic
cases enlarges the pool of subjects who met with them and are, therefore, traceable.

This externality may lead the number of traceable contacts E, to rise to the point
at which the testing system collapses, with very severe consequences for the economy.
When the number of traceable contacts largely exceeds the testing capacity, Y,, the
probability for traceable people to be tested (77 ,) falls and, with it, the probability
for untested asymptomatic subjects to test positive, (nj;’t, i € {T, A}). Consequently,
the number of asymptomatic spreaders starts increasing out of control and the spread
of the virus accelerates. The economy contracts sharply as the heightened probability
of becoming infected, 7,, causes non-quarantined agents to want to reduce economic
interactions so as to minimize the probability of catching the virus and dying.'!

Eichenbaum, Rebelo, and Trabandt (2021) consider the case in which individuals
do not internalize the limited availability of beds in hospitals when they decide how
much to consume and work (medical preparedness). While both that externality and
the one studied in our paper are about the existence of a bottleneck agents do not
internalize, how these two types of externality affect the economic and health outcomes
of a pandemic is quite different. When tests are running short, the efficacy of contact
tracing falls, the effective reproduction number of the virus soars, and the threshold of
recovered agents needed to reach herd immunity increases. As a result, the consumption
loss and the number of deaths due to the pandemic worsen considerably. In contrast,
the medical-preparedness externality leads to a larger consumption loss and a heavier
death toll because the mortality rate sharply rises if there are not enough beds to treat
ill agents.

It is also important to note that putting in place a viable system of contact tracing
is an effective tool to address the medical-preparedness externality. As we shall show,
when we solve the optimal social distancing problem, the planner wants to scale up
social distancing measures to shore up the tracing and testing system so as to keep
the number of infected cases low. If we expanded the model to introduce medical
preparedness, the planner would still want to tighten social distancing in similar
fashion to preserve the tracing and testing system. If the planner did not do that,
more subjects would become infected and more stress would be put on the health
system. An implication of this argument is that the externality concerning medical
preparedness becomes less relevant for policymakers when the externality threatening
the functionality of the tracing and testing system is properly addressed.

11.  There is another source of externality in the model. Agents do not internalize that their consumption
and labor decisions affect how many people will become infected in the economy and, hence, ultimately
the probability of getting infected. Eichenbaum, Rebelo, and Trabandt (2021) study the implications of this
externality in great detail. In our model with contact tracing, that externality does not play any significant
role.
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In the next section, we will characterize the probability of being traced and
tested (né,t and 7y ,) under the assumption that health authorities can trace only
those contacts that has occurred in the current week. We show how to obtain
those probabilities for the case of the comprehensive tracing technology in Online
Appendix A.

3.1. The Probability of Being Traced

Contact tracing allows health authorities to trace only those contacts that occur in the
current week. It is useful to combine the binomial distributions in equations (1), (2),
and (3) to obtain the probability for an agent who does not know their health status
to meet k-times with the set of untested asymptomatic subjects while consuming,
working, and performing other activities:

k k—i

LG =D fo i@ f i (D) f k=i = ). (17)

i=0 =0

Conditional on meeting k asymptomatic subjects in period ¢, the probability that at
least one of these subjects becomes symptomatic in the same periodis 1 — (1 — n,S)k .
Thus, the probability for a subject who does not know the health status to be traced is

e () toy @)+,

no, =nl, =k = > [1— (1 —moFlf,(k),  (18)
k=0

implying that the probability of being traced is the same for the three unobserved types:
susceptible (§), untested asymptomatic (A), and unobserved recovered (UR). This is
because these agents consume and work the same amount as shown in Section 2. As
a result, they will have the same number of total interactions ¢ (c;) + ¢ (n7) + ¢
and the same probability of meeting with k untested asymptomatic agents.

We now work out the probability for a newly infected subject to be traced, ﬂg,t.
Newly infected subjects are susceptible at the beginning of the period and become
infected because they have met an untested asymptomatic individual. Thus, we have
to condition the probability distribution that a susceptible agent has met k untested
asymptomatic subjects in period ¢ —f, (k) defined in equation (17)—on the fact that
the newly infected agent has met at least one untested asymptomatic subject, that is,
the agent who infected them. To do so, we apply the Bayes theorem to obtain

Ji (k)T (k)
pa—

t

(k) = (19)

where (k) =1—(1 — r)k is the probability of getting at least one infectious contact
out of k interactions, and recall that 7, stands for the average probability for susceptible
subjects to become infected in period ¢, which is defined in equation (5). Following the
same reasoning behind the probability in equation (18), we characterize the probability
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for a newly infected individual to be traced as

oc ()t )+,

nly = > [1— (1 - m)F1 AT (k). (20)

k=0

As noted at the beginning of this section where we analyzed Figure 1, an untested
asymptomatic subject can only be traced if they have met a newly symptomatic subject
randomly. The application of the Bayes theorem adjusts the probability distribution
£.T (k) to factor in that the newly infected subject belongs to the infection chain of an
agent who was untested asymptomatic at the beginning of the period. This is important
as this untested asymptomatic agent may turn symptomatic with probability ;5. The
event that the subject who infected the newly infected agent turns symptomatic is
more likely than the joint event that an untested asymptomatic agent has randomly
met another untested asymptomatic agent (Y ., f;(k)) and the latter agent turns
symptomatic. Therefore, an untested asymptomatic agent is less likely to be traced
than a newly infected agent under the contact tracing technology (ng’t > ﬂé,t).

In Online Appendix I, we show the unconditional and conditional distributions
f;(k) and £T (k) in one simulation where the tracing technology leads to successful
control of the pandemic. As one can see, the probability of catching an untested
asymptomatic subject is dwarfed by the fact that these subjects are very unlikely to
meet randomly with other untested asymptomatic agents, who can turn symptomatic.
Conditioning on the fact that newly infected agents have met at least one untested
asymptomatic subject causes the mode of the probability £, (k) to shift from k = 0
to k = 1, making tracing more likely. This result underscores the importance of
exploiting the existence of the infection chain to increase the chance of detecting
newly symptomatic agents.

3.2. The Conditional Probability of Being Traced

The contact tracing technology endows health authorities with the list of contacts of
the newly symptomatic agents in period . Health authorities look at the contacts with
individuals whose health status is unknown (i.e., contacts with observed recovered
individuals are discarded). We call this set of traceable individuals the exposed. The
measure of this set is given by

E,=nl, S, +nd, 0 —moI + 7% RV, 1)

where ng’t, J'L'g’t, and w2, are the probabilities of being traced for the three types
of agents who do not know their health status. These probabilities were defined in
equation (18). We adjusted the share of the untested asymptomatic subjects who were
exposed by taking out those who have revealed symptoms (7,51 ,A) in period ¢.

Health authorities do not know the health status of susceptible, untested
asymptomatic, and unobserved recovered individuals and hence they cannot tell these
types of subjects apart when it comes to deciding who to test. Thus, the probability of

UR
C,t
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TABLE 1. Calibration.

Parameters Sign  Value Target / source

(a) Economic parameters

Discount factor B 0.961/52  Conventional discount factor
Labor disutility 0 0.13%  Weekly working hours of 28
Productivity A 39.84  Yearly income $58,000
Frisch labor elasticity 7 0.5 Literature

(b) Epidemiological parameters
Interaction via consumption ¢c 0.99%  Consumption-based interactions 33%
Interaction via labor oN 0.39 Labor-based interactions 33%
Interaction independently %o 10 Basic reproduction number R, = 2
Probability of infection T 5% World Health Organization (2020)
Recovery rate TR 7/18  Average recovery rate = 18 days
Symptomatic rate s 7/18 Share of symptomatic cases = 50%
Mortality rate Tp 0.6%  Infection fatality rate = 0.3%
False negative outcome g 0 False positive probability = 0
Quarantine policy /,LQ 1 Quarantine lowers C and L by 30%
Productivity symptomatic ¢ 0.8 Eichenbaum et al. (2021)
Social distancing effect on quarantine o 0 No impact besides quarantine
Initial infection € 0.1% Infections March 16, 2020

testing a traceable contact does not depend on the contact’s health status and is

(T,
7T, p = Min I,EZ , 22)

whererecall T, > 0 denotes the testing capacity of policymakers in every period, which
is an exogenous variable. We substitute equations (20) and (22) into equation (16) to
obtain the probability of testing positive for newly infected subjects, JTIT, ;- Substituting

both the probability ﬂé , of equation (18) and the conditional probability of being
tested of equation (22) into equation (16) allows us to pin down the probability of

testing positive for subjects infected in earlier periods, nl‘é ;- The probabilities nﬁt

and ﬂg ;» in turn, pin down the dynamics of types in equations (14) and (15) for the
contact tracing technology.

4. Model Solution and Calibration

We use the model to study the response of epidemiological and economic variables
following a surprise shock that initially infects a tiny share of the population. To this
end, we solve the model iteratively with a numerical root finder that computes the
sequence of policy functions and the evolution of the measure of agent types for a
given number of periods. More details are in Online Appendix D.

The calibrated parameters of the model are summarized in Table 1. The economic
parameters are calibrated based on Eichenbaum, Rebelo, and Trabandt (2021). We set
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the weekly discount factor to 0.96'/°2. This number is standard and implies the value
of a statistical life of roughly 10 million 2019 U.S. dollars, which is in line with what
other studies assume (e.g., Eichenbaum, Rebelo, and Trabandt 2021). Productivity, A,
is set to match a yearly income of $58,000. The scale parameter of labor disutility,
0, is calibrated so that agents work on average 28 hours per week. The Frisch labor
elasticity ¢ is 0.5.

The epidemiological parameters are calibrated to the recent COVID-19 crisis in
the US. A key epidemiological parameter is 7, which is the probability that one
interaction with an infected subject results in an infection. We set this parameter to
5% based on evidence from the World Health Organization (2020). The parameters
¢c» ¢y and @, determine the number of interactions required to support levels of
individual consumption ¢}, labor n7, and other non-economic activities, respectively.
The original step functions ¢ (c,) and ¢, (n,) are shown in Online Appendix 1. We
set the parameters ¢ and ¢, so that consumption- and labor-based transmissions of
the virus account for a share of 1/3 each when consumption and labor decisions are
fixed to the pre-pandemic level. The values are consistent with the influenza study by
Ferguson et al. (2006).

The parameter ¢, is set to target a basic reproduction number R, of 2 in line
with the evidence about the early transmission of COVID-19 (Li et al. 2020.).2
The calibration implies a total amount of 30 interactions in the pre-epidemic economy,
which is consistent with surveillance data (e.g., Pung et al. 2020). In line with evidence
from the World Health Organization (2020), we choose that an agent recovers on
average after 18 days. We calibrate the probability of developing symptoms (), so
that 50% of infected agents develop symptoms at some point of the pandemic crisis,
which is in line with the symptomatic rate estimated by Baqaee et al. (2020b).!3 A key
metric in parameterizing an SIR model is the infection fatality rate, which measures the
amount of deaths relative to all infectious cases. The mortality rate 7, is the infection
fatality rate divided by the share of symptomatic agents. This rate is calibrated to target
an infection fatality rate of 0.3% as in Hortagsu, Liu, and Schwieg (2021).'4

In the model, symptomatic agents are subject to a labor productivity penalty, ¢.
We calibrate the penalty ¢ = 0.8 based on Eichenbaum, Rebelo, and Trabandt (2021).
Furthermore, infected symptomatic agents and tested-positive agents are quarantined,
which is modeled as a tax on consumption, ;LCQ. This tax implies that at steady state the
consumption and labor of a tested-positive agent is lower than those of non-quarantined
(non-recovered) agents by approximately 30%. We assume that quarantined agents are
not affected by social distancing. We set the probability of a false negative outcome
7 to 0. The initial share of infected agents € is set to 0.1% and is divided evenly
between asymptomatic and symptomatic agents. Following Berger et al. (2022), this

12.  This is the total number of infections caused by one infected person in their lifetime in a population
where everybody is susceptible and no containment measures are taken.

13.  There is mixed evidence about this rate as discussed in Online Appendix J.

14. Fernandez-Villaverde and Jones (2022) estimate a rate of 1%.
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can be interpreted as the amount of infections adjusted for unreported cases on March
16, 2020.

5. Quantitative Analysis of Contact Tracing

To better understand the results shown in this section, it is useful to define an
epidemiological variable that gauges the speed at which the virus is spreading: the
effective reproduction number, RtE, which is defined as

o0
RE = (1=nh,) Y (ae, (0 —ms =7 Ty (1= 7,00)) - @3)
=0

This number captures how many susceptible people an untested asymptomatic agent
infects on average during the spell of their illness. An effective reproduction number
above 1 indicates a situation in which the virus is infecting more and more people over
time, while a number below 1 signifies that the virus is retreating. The efficiency of the
tracing technology and the testing capacity affect the reproduction number RZ through
the probability for newly infected subjects and for untested asymptomatic subjects to
test positive; that is, Jr}T,J and ﬁ,t, respectively. Social distancing lowers this number
RE primarily by reducing the infection rate, t,.

It is important to note that the reproduction number is more sensitive to changes in
the probability for a newly infected agent to test positive, 7'[17;’[_1, than to changes in
the future probability for an untested asymptomatic agent to test positive, ;," k- The
reason is that asymptomatic agents may turn symptomatic or recover in every future
period and, when they do, they will stop infecting other people. The transitory nature
of being asymptomatic, which is captured by the term (1 — 7,y — 7p), implies that
increasing the probability of catching asymptomatic agents further in the future has
decreasing effects on the reproduction number.

5.1. Contact Tracing with Unlimited Testing Capacity

It is interesting to start with a scenario in which tests are always sufficient to cover all
the contacts of newly symptomatic subjects. This scenario sheds light on the efficacy
of contact tracing technologies in the most favorable environment where policymakers
do not face any bottleneck when tracing and testing people. In addition, this exercise
will show us how many tests would be needed to make contact tracing work best.

In this scenario, we also consider random testing as an alternative to contact tracing,
which has been advocated by Romer (2020) among other scholars.'> It is assumed that
random testing is run on a weekly testing capacity of 10% of the initial population
over the entire simulation horizon. This implies a daily testing capacity of close to

15. The formalization of random testing in our model is explained in Online Appendix C.
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FIGURE 2. Comparison of different testing strategies with unconstrained number of tests for contact
tracing and comprehensive contact tracing. The amount of tests used in random testing is 10% of the
entire population each week.

5 million tests. To put this number in perspective, 1 million tests were administered
per day in September 2020 in the U.S. We also consider the case in which no testing
is performed.

Figure 2 shows the evolution of the key epidemiological, economic, and testing
variables. Beginning with the case in which no one is tested (the green dashed—dotted
line), the pandemic spreads very fast and causes many people to become infected. The
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pandemic crisis fades away when 60% of the population becomes infected and herd
immunity is reached. In total, 0.4% of the population dies because of the pandemic.
In response to the surge in the infection probability, agents reduce their interactions
by drastically lowering consumption and labor. As a consequence, the economy goes
through an extreme recession, with aggregate consumption contracting by up to 50%.

The introduction of the contact tracing technology hugely improves outcomes by
slowing the spread of the virus and reducing the death toll by more than 50% (solid blue
line in Figure 2). As the virus spreads less quickly (lower reproduction number), the
chances of getting infected are reduced, leading agents to lower their consumption and
labor less dramatically compared to the case of no testing. The reproduction number
quickly drops and eventually falls below 1. As a result, herd immunity is reached with
around 20% of infected agents—three times less in the case of no testing.

The comprehensive contact tracing technology, which allows tracing of contacts
up to one week back, (the red dashed line in Figure 2) further mitigates the severe
consequences of the pandemic crisis.'® However, the improvement is only marginal
relative to what is already achieved by the contact tracing technology. Both tracing
technologies require testing at most 4% of the population in a week, which is
substantially less than the number of tests we assume for random testing. The timing of
the testing varies somewhat across these two tracing technologies. The contact tracing
technology requires more tests to be performed a few periods after the pandemic has
started (around period 30) relative to the comprehensive one.

While this result may seem odd at first, it is important to recall that the contact
tracing technology is less effective than the comprehensive technology in detecting
untested asymptomatic subjects. The contact tracing technology can only trace these
subjects through random meetings. As explained in Section 3.1, these types of meetings
are quite rare.'” As a result, in the lower right panel of Figure 2, the share of untested
asymptomatic subjects detected by the contact tracing technology is very low compared
to the levels attained by the comprehensive technology. Thus, the effective reproduction
number is initially higher in the case of the contact tracing technology, which justifies a
faster increase in the number of traceable subjects, E,, and hence more tests performed
a few periods after the pandemic has started (around period 30). In short, under the
contact technology, you trace and test fewer people at the onset of the pandemic and
this requires you to test more people later on.

Even though random testing (the black dotted line in Figure 2) is assumed to have
an implausibly large testing capacity, it proves to be fairly ineffective in mitigating the
outcomes of the pandemic. Even if 5 million people could be randomly tested every
day, the pandemic would lead to a severe contraction and would kill 0.35% of the
entire population—-more than twice as many deaths as under contact tracing.

What Explains the Spectacular Failure of Random Testing? To answer this question,
one should look at the two bottom graphs of Figure 2, which show the share of newly

16. The formal derivation of comprehensive contact tracing is explained in Online Appendix A.

17. The probabilities of such meetings are shown in Online Appendix I Figure 1.2 for periods 20 and 40.
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infected asymptomatic subjects and the share of untested asymptomatic subjects who
are detected and quarantined in every period under random testing and under the two
tracing technologies. Even though many more tests are performed, random testing can
detect only around 10% of the newly infected subjects in every period. Random testing
is rather effective in capturing untested asymptomatic subjects. Even so, random testing
fails to reduce the reproduction number, underscoring the importance of detecting
and quarantining the newly infected cases to attain a successful containment of the
virus. This last intuition is reinforced by observing that even though the tracing
technology largely fails to detect untested asymptomatic subjects, it fares relatively
well in containing the economic costs and mortality of the pandemic.

That the probability of catching the newly infected asymptomatic subjects turns out
to be key to controlling the pandemic should not come as a surprise. We already noted
that the reproduction number defined in equation (23) is more sensitive to changes in
the probability for newly infected agents to test positive, n}T,’t, than to changes in the

probability for untested asymptomatic subjects to test positive, ﬁ,t.

Why is Contact Tracing so Successful? By leveraging the information contained in
the reconstructed infection chains, contact tracing allows policymakers to break the
positive relation between the probability of detecting newly infected agents ng’l and
the infection rate 7,. In doing so, contact tracing resolves an important challenge faced
by random testing: at the beginning of a pandemic—when the infection rate z, is low—
infected agents who can spread the virus are only a few and are therefore hard to detect.
As explained before, the ability of detecting and quarantining newly infected agents has
a large effect on reducing the effective reproduction number, allowing contact tracing
to nip the pandemic in the bud. Hence, social distancing is not required to quash a
surge in the number of infections. Rather, these measures are only adopted if needed to
address the externality associated with consumption and labor. The challenges posed
by this externality are shown in the next section, where we impose an upper bound on
the number of tests that can be performed in every period.

5.2. Contact Tracing with Limited Testing Capacity

In the previous section, we showed that the contract tracing technology does a great job
in controlling the spread of the virus. The comprehensive tracing technology improves
outcomes only marginally. In this section, we show that this is not the case when
the testing capacity, Y, is calibrated to the amount of tests performed in the U.S.
from March 16, 2020, through October 4, 2020. The U.S. health authorities had a
daily capacity of only 30,000 tests available at the onset of the pandemic crisis. This
capacity then increased linearly up to 1 million tests 28 weeks later.'® Afterward, the
capacity is assumed to increase at a steady pace until week 52, after which it stays put.

18.  The US conducted 231,081 tests between 16 and 22 of March (approximately 33,000 daily tests).
Between September 28 and October 4, the U.S. conducted 6,936,961 tests (around 991,000 daily tests).
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FIGURE 3. Comparison of different testing strategies with limited testing capacity: contact tracing
(blue solid line), contact tracing combined with social distancing for 30 periods (green dash—dotted
line), and comprehensive tracing (red dashed line). In the sixth plot, the yellow starred line shows
the testing capacity Y.

Looking at the third left plot in Figure 3, the contact tracing technology (blue solid
line) requires testing to accelerate after period 30 to compensate for its inability to
catch untested asymptomatic subjects, as reflected in the low value of & ﬁ,t in the lower
right plot of the figure. However, the testing capacity is not growing fast enough and
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the blue solid line hits the yellow starred line, denoting the U.S. testing scale (). As
the testing capacity becomes binding, the testing system collapses, as captured by the
rapid drop in the probability of catching a newly infected subject (”Z;,z)' The effective
reproduction number increases then and agents cut their consumption and labor in
response to the higher risk of getting infected.

The comprehensive tracing technology (the red dashed line in Figure 3) delivers the
best outcome among the considered strategies. This better tracing technology allows
health authorities to detect and isolate roughly 20% of untested asymptomatic agents
in every period via backward tracing (see the bottom right graph). In doing so, this
technology keeps the path of exposed subjects lower, reducing the number of tests
required. Consequently, the number of tests performed does not accelerate after period
30 as in the case of the contact tracing technology. Thus, under the comprehensive
tracing technology, the number of required tests does not become constrained by the
limited testing capacity so early and the testing system remains viable."”

5.3. Complementarity with Other Containment Policies

In Section 5.1, we showed that a well-functioning tracing and testing system allows
policymakers to reduce both the consumption loss and the death toll of a pandemic.
However, actual implementation of contact tracing turned out to be very challenging
for a variety of reasons in many countries across the world. We showed that one reason
that can impair the correct functioning of contact tracing is the scarcity of tests, which
can be more broadly interpreted as the inability of coordinating tracing and tests when
the number of traced close contacts grows too large. In this section, we study how to
remedy this situation that leads contact tracing to fail. We consider three containment
policies that the government can deploy to shore up a tracing system at risk of collapse.
The first policy is social distancing, the second one is a tighter quarantine, and the
third one is to randomly allocate the excess testing capacity.

Table 2 summarizes the outcomes and compares them with those studied in the
earlier sections. The case of “All exposed quarantined” will be explained in Section 5.4
and will be used to isolate the social value of testing. The table shows the welfare
losses expressed as consumption equivalents relative to the non-pandemic economy.
It also shows the average consumption loss over the entire considered horizon of
250 periods relative to the non-pandemic economy, the cumulative mortality rate
and the recovery rate at the end of the pandemic. The social costs of the different
scenarios are expressed in trillions of dollars. Online Appendix F shows the derivation
of consumption equivalents and the social costs.

Before evaluating the three cases, it is important to notice that, in the idyllic
case of unlimited testing capacity (no externality), contact tracing reduces the share of

19. Nevertheless, the testing availability becomes binding later on, lowering the probability of testing
asymptomatic subjects, /!, somewhat in subsequent periods. Because of the pecking order (explained in
Online Appendix A), there is no effect on the probability of detecting newly infected agents, 7, which, as
already pointed out, is essential to contain the pandemic. Thus, the effective reproduction number hardly
budges.
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TABLE 2. Welfare, economic, and health outcomes of various containment policies.

Welfare Consumption Mortality Recovered Social costs

CE %" %° %° %9 trillion $°

Contact tracing with /imited testing capacity

No social distancing —2.07 —3.22 0.30 39 9.67

Optimal social distancing (short) —1.06 —2.55 0.17 22 4.93

Optimal social distancing (long) —-0.92 —6.56 0.12 16 4.27

Tighter quarantine —1.06 —-1.92 0.17 22 4.94
Alternative contact tracing scenarios

Unlimited testing capacity —1.05 —-1.89 0.17 22 4.91

Comprehensive tracing —-0.74 —1.38 0.12 15 3.44

All exposed contacts quarantined —1.40 —-2.95 0.21 28 6.51
No contact tracing

No testing —2.93 —4.25 0.41 54 13.64

No testing + optimal social distancing —2.87 —6.76 0.39 51 13.39

Random testing —2.40 —3.67 0.35 45 11.18

Welfare gain/loss expressed as consumption equivalent relative to a non-pandemic economy.
Cumulated consumption loss at the end of the pandemic relative to a non-pandemic economy.
Cumulated mortality rate at the end of the pandemic.

Fraction of recovered agents at the end of the pandemic.

o a0 oop

Social costs in trillion $ relative to a non-pandemic economy.

recovered agents needed to reach herd immunity by 32 percentage points. Compare the
column reporting the cumulative percentage of fully recovered agents at the end of the
pandemic in the case of Unlimited testing capacity (under Alternative contact tracing
scenarios) with the No testing (under No contact tracing scenarios) in Table 2. This
result arises because tracing and testing permanently lower the effective reproduction
number of the virus—as shown in Section 5.1—decreasing the threshold of recovered
people needed to attain herd immunity.

Now we turn to the less idyllic case in which contact tracing is threatened
by an externality due to limited testing capacity. In this context, we will show
how containment policies can be combined with contact tracing to deliver welfare,
economic, and health outcomes that are remarkably similar to those obtained under
the idyllic case of unlimited testing capacity (no externality).

Optimal Social Distancing. 'We solve for the optimal path of the consumption tax rate
[,L(‘it. As standard in this literature, the planner sets the consumption tax to maximize
the welfare of the economy at the beginning of the pandemic. Online Appendix F
describes the welfare criteria and the Ramsey problem in detail. For a reason that
will be clarified below, we consider two scenarios: The government can either commit
its social distancing policy over a period of either 30 weeks (labelled Optimal social
distancing (short) in Table 2) or 150 weeks (labelled Optimal social distancing (long)
in the table). The green dash—dotted line in Figure 3 shows the dynamics of the macro
and epidemiological variables under the optimal short social distancing policy.
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FIGURE 4. Optimal social distancing—the planner’s optimal path of consumption tax rates is shown
for different scenarios in an economy with contact tracing. The test availability is either limited (blue
lines) or unlimited (red lines). We consider two horizons over which the government can commit to
maneuver the tax rate: a long horizon of 150 periods (solid lines—long social distancing) or a short
horizon of 30 periods (dashed lines—short social distancing).

As shown in Figure 3, when we solve for the optimal path of consumption tax
rates over the first 30 periods, the collapse of the tracing and testing system is averted
by implementing social distancing before the testing capacity would become binding.
See the tax increases over the 30 periods aimed to curtail the amount of consumption
and labor interactions. By lowering the amount of economic interactions early on,
social distancing reduces the number of tests required, preventing the testing capacity
from becoming binding later on. Hence, the effective reproduction of the virus is
successfully reduced, allowing the economy to reach herd immunity with fewer cases,
as shown in Table 2 (see optimal social distancing (short) for limited testing capacity).

Remarkably, the optimal short social distancing policy leads to a cumulative
mortality rate and welfare gains that are very similar to those achieved under no
constraint on testing (unlimited testing in Table 2), where, by construction, no
externality threatens the functioning of contact tracing. As Figure 3 shows, the lower
aggregate consumption path at the beginning due to the tightening of social distancing
is more than compensated by a higher consumption level throughout the pandemic,
relative to the case in which the tracing and testing system collapses.

How can the government avert the collapse of the tracing and testing system?
This is shown in Figure 4, in which the optimal tax rate from the Ramsey problem
is displayed. Under both time horizons considered (blue solid and dashed lines), the
optimizing tax rate is increased in the run-up to period 37 when the system would
have collapsed in the absence of this measure. Yet, if we assume unlimited testing
capacity (the red solid and dashed lines), the externality studied in this paper does not
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arise, the tracing and testing system does not collapse, and the optimal tax rate is not
characterized by any increase from period 30 through period 37.

Why is the optimal tax rate increased a second time when we consider a longer
commitment period (the solid lines in Figure 4)? The optimal consumption path is
raised to sufficiently slow down the spreading of the virus to attain herd immunity
gradually over time. This result is not new, and Eichenbaum, Rebelo, and Trabandt
(2021) have explained it thoroughly.?® If one compares the consumption loss and the
mortality rate in the case of limited testing capacity and short social distancing with
those in the case of limited testing capacity and long social distancing in Table 2, one
can see that the second tax hike leads to a quite dramatic contraction in consumption
to push the death toll down only a bit. This result is in line with other studies that
calibrate the costs of a statistical life similarly to the way we do in our paper.

Importantly, while, of course, social welfare increases relative to the case of the
short social distancing policy, much of the welfare gains are reaped in the short run. This
can be seen by comparing the first column in Table 2 for the cases No social distancing,
Optimal social distancing (short), and Optimal social distancing (long) under “Contact
tracing with limited testing capacity”. This finding highlights the importance of the
type of externality studied in this paper.

To sum up, we showed that (i) a combination of mitigation policies (in this case
contact tracing and testing + social distancing) is welfare improving; (ii) it is optimal
to use mitigation policies to lower social interactions right before tests are running
short; and (iii) most of the welfare gains are reaped by only correcting the externality
studied in our paper—that is, by implementing the short optimal social distancing
policy. Welfare gains from addressing the other externality in the model are relatively
small.

Tighter Quarantine Policy and Limited Testing Capacity. To keep the tracing and
testing system afloat when tests are running short, policymakers decide to quarantine
all the agents for whom no test is available because the testing capacity constraint is
binding. When the testing capacity constraint is not binding, policymakers quarantine
only subjects who test positive, exactly as in the baseline case. For computational
reasons, we assume that the duration of the quarantine for the untested agents is
stochastic. Agents who were tested before being quarantined leave the quarantine
when they test negative, as assumed in the baseline case. The outcomes of this mix of
policies is shown in Table 2 as “Tighter quarantine.”

The more aggressive quarantine policy leads to welfare, economic, and health
outcomes that are remarkably similar to the case of unlimited testing capacity and to
the case of (short) optimal social distancing policy under limited testing capacity. The
reason is that by quarantining more people, policymakers avert the collapse of contact
tracing. Nevertheless, outcomes are slightly worse than those under unlimited testing

20. The second tax hike needed to address the externality related to achieving herd immunity is much
larger than the first hike intended to address the externality studied in our paper. This relatively large tax
hike is due to the quite large value the literature typically attributes to a human life in the calibration. The
magnitude of the first tax hike primarily depends on how many tests are available.
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capacity because the lack of tests prevents policymakers from knowing the true health
status of those agents who are quarantined under the tighter quarantine regime. Thus,
some subjects who leave quarantine are still asymptomatic and able to infect others.
As a result, consumption falls and mortality increases. Furthermore, consumption falls
because more agents are quarantined and quarantined agents consume less. However,
the effects on consumption are rather small quantitatively, as shown in Table 2. Indeed,
the tighter quarantine policy leads to a better consumption outcome than the optimal
short social distancing policy, which, to be effective, has to lower the consumption
path considerably in the early stages of the pandemic as shown in Figure 3.

Random Testing in Combination with Contact Tracing. When random testing is
combined with contact tracing, the marginal contribution of allocating tests randomly
is negligible. We combine these two testing strategies by assuming that when the
testing capacity exceeds the number of traced subjects to be tested, this excess of tests
is allocated randomly across the population. The negligible marginal contribution of
random testing is due to the inability of this testing strategy to significantly lower
the effective reproduction number beyond what contact tracing already achieves.
This failure is largely due to the low probability that asymptomatic spreaders can be
detected through their random meetings with newly symptomatic cases, as explained in
Section 5.1 and shown graphically in Online Appendix 1. More details on the random
testing in combination with contact tracing are shown in Online Appendix C.

We conclude that both optimal social distancing and a tighter quarantine policy are
suitable tools to preserve the viability of the tracing and testing system, while random
testing is not. Indeed, when the government has a limited ability to commit to optimal
(short) social distancing, the welfare implications of the two approaches are virtually
identical, as shown in Table 2. Even when the government has the ability to commit
for a longer period of time, optimal social distancing policy leads to a quite small
increase in social welfare. And this slightly higher level of welfare can be achieved by
sacrificing much more consumption than what the tighter quarantine policy engenders.

5.4. The Value of Tracing and Testing

We now use our model to study the social value of tracing and testing. To this end, we
compare the case of unlimited testing capacity plus tracing to the case of no tracing
and testing in Table 2. This comparison shows that testing and tracing more than halve
the consumption loss and the mortality rate. According to our model, the social gains
from running a viable tracing and testing system are of the order of $8.7 trillion. This
result underscores the importance of preserving the tracing and testing system.

Let us now focus on the gains from testing alone (conditional on being able to
trace the contacts of confirmed cases in the current week). For this, we construct a
counterfactual case in which there is no test and hence policymakers have to quarantine
all the traced contacts.?! This requires to quarantine lots of susceptible subjects, and

21.  We assume that quarantine has a stochastic duration in the absence of tests for computational reasons.
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since tests are not available, some infected agents may leave quarantine still being
asymptomatic and infect more susceptible subjects. Furthermore, without testing,
subjects who did not develop symptoms during quarantine do not know their health
status. This lack of information lowers welfare. The case of no testing is called “All
exposed contacts quarantined” in Table 2. If one compares this case with of unlimited
testing capacity, the value of having enough tests to check the health status of all the
traced contacts is valued by the model to be equal to $1.6 trillion.

Furthermore, we show that being able to trace contacts for one additional week
(comprehensive contact tracing) will further lower the mortality rate (—0.05 percentage
points) and the consumption loss (—0.051 percentage points). The value of a more
comprehensive tracing system is roughly $1.5 trillion.

6. Extensions

Our objective was to construct a macro-epidemiological model to serve as a general
framework to study the efficacy (or lack thereof) of contact tracing and testing. With
this goal in mind, we tried to keep the model as clean as possible. That said, our model
can be extended in a number of interesting directions. First, an interesting extension
could be the case of superspreaders—a small number of carriers ending up infecting
many individuals. Second, we could extend our methodology to study multiple rounds
of contact tracing and testing. However, this extension would not change our main
conclusions because any gain from performing additional rounds of tracing and testing
can only be incremental relative to an already close-to-optimal control of the virus
with the comprehensive tracing technology. Third, a more stringent mask-wearing
mandate could be another tool to shore up contact tracing. Finally, the government
could implement a furlough scheme to contain the economic losses of quarantined
agents. Details on the latter two policies and related simulations are shown in Online
Appendix G.

7. Concluding Remarks

We study contact tracing in a macro-epidemiological model in which some of the
infected agents remain asymptomatic for a number of periods, during which they
contribute to spreading the virus. In the model, agents’ consumption and labor
decisions have externality on the number of subjects that will need to be traced and
tested. This externality can threaten the correct functioning of contact tracing. Timely
deployed containment policies—social distancing or tightening quarantine policies—
may correct this externality, allowing policymakers to move beyond the traditional
pandemic trade-off between saving human lives and mitigating the economic costs
of pandemics. Indeed, we showed that the complementarity between contact tracing
and these containment policies is so strong that policymakers can achieve welfare,
consumption, and health outcomes that are remarkably similar to the idyllic case in
which no externality threatens the implementation of contact tracing.

€20 1snBny gz U0 Jasn urepNNpuBIS @n A 0/8250./€10PEAESRI/EE0 L 0 L/IOP/SI0NIE-90UBADE/288(/W00"dNO"oIWBPEdE//:SARY WOy POPEojumod



Melosi and Rottner Pandemic Recessions and Contact Tracing 31

References

Acemoglu, Daron, Victor Chernozhukov, Ivian Werning, and Michael D. Whinston (2021). “Optimal
Targeted Lockdowns in a Multi-Group SIR Model.” American Economic Review: Insights, 3(4),
487-502.

Akbarpour, Mohammad, Cody Cook, Aude Marzuoli, Simon Mongey, Abhishek Nagaraj, Matteo
Saccarola, Pietro Tebaldi, Shoshana Vasserman, and Hanbin Yang (2020). “Socioeconomic
Network Heterogeneity and Pandemic Policy Response.” NBER Working Paper No. 27374.

Alvarez, Fernando, David Argente, and Franceso Lippi (2021). “A Simple Planning Problem for
COVID-19 Lockdown, Testing, and Tracing.” American Economic Review: Insights, 3(3), 367—
82.

Atkeson, Andrew (2020). “What Will Be the Economic Impact of COVID-19 in the US? Rough
Estimates of Disease Scenarios.” NBER Working Paper No. 26867.

Atkeson, Andrew, Michael Droste, Michael J. Mina, and James H. Stock (2020). “Economic Benefits
of COVID-19 Screening Tests.” NBER Working Paper No. 28031.

Aum, Sangmin, Sang Yoon Tim Lee, and Yongseok Shin (2021). “Inequality of Fear and Self-
Quarantine: Is There a Trade-off between GDP and Public Health?” Journal of Public Economics,
194, 104354.

Azzimonti, Marina, Alessandra Fogli, Fabrizio Perri, and Mark Ponder (2020). “Pandemic Control
in ECON-EPI Networks.” NBER Working Paper No. 27741.

Bagaee, David, Emmanuel Farhi, Michael Mina, and James H. Stock (2020a). “Policies for a Second
Wave.” Brookings Papers on Economic Activity, 2020, 385-443.

Bagaee, David, Emmanuel Farhi, Michael J. Mina, and James H. Stock (2020b). ‘“Reopening
Scenarios.” NBER Working Paper No. 27244.

Berger, David, Kyle Herkenhoff, Chengdai Huang, and Simon Mongey (2022). “Testing and
Reopening in an SEIR Model.” Review of Economic Dynamics, 43, 1-21.

Bethune, Zachary A. and Anton Korinek (2020). “Covid-19 Infection Externalities: Trading off Lives
vs. Livelihoods.” NBER Working Paper No. 27009.

Bianchi, Francesco, Renato Faccini, and Leonardo Melosi (2020). “Monetary and Fiscal Policies in
Times of Large Debt: Unity is Strength.” NBER Working Paper No. 27112.

Bognanni, Mark, Doug Hanley, Daniel Kolliner, and Kurt Mitman (2020). “Economics and
Epidemics: Evidence from an Estimated Spatial Econ-Sir Model.” IZA Discussion Paper No.
13797.

Brotherhood, Luiz, Philipp Kircher, Cezar Santos, and Michele Tertilt (2020). “An Economic Model
of the Covid-19 Pandemic with Young and Old Agents: Behavior, Testing and Policies.” Working
Paper No. w202014, Economics and Research Department.

Chari, V.V,, Rishabh Kirpalani, and Christopher Phelan (2021). “The Hammer and the Scalpel: On
the Economics of Indiscriminate versus Targeted Isolation Policies During Pandemics.” Review
of Economic Dynamics, 42, 1-14.

Eichenbaum, Martin S., Sergio Rebelo, and Mathias Trabandt (2021). “The Macroeconomics of
Epidemics.” The Review of Financial Studies, 34, 5149-5187.

Eichenbaum, Martin S., Sergio Rebelo, and Mathias Trabandt (2022). “The Macroeconomics of
Testing and Quarantining.” Journal of Economic Dynamics and Control, 138, 104337.

Farboodi, Maryam, Gregor Jarosch, and Robert Shimer (2021). “Internal and External Effects of
Social Distancing in a Pandemic.” Journal of Economic Theory, 196, 105293.

Favero, Carlo A., Andrea Ichino, and Aldo Rustichini (2020). “Restarting the Economy while Saving
Lives Under Covid-19.” CEPR Discussion Paper No. 14664.

Ferguson, Neil M., Derek A.T. Cummings, Christophe Fraser, James C. Cajka, Philip C. Cooley,
and Donald S. Burke (2006). “Strategies for Mitigating an Influenza Pandemic.” Nature, 442,
448-452.

Fernandez-Villaverde, Jesds and Charles 1. Jones (2022). “Estimating and Simulating a SIRD Model
of COVID-19 for Many Countries, States, and Cities.” Journal of Economic Dynamics and
Control, 140, 104318.

€20 1snBny gz U0 Jasn urepNNpuBIS @n A 0/8250./€10PEAESRI/EE0 L 0 L/IOP/SI0NIE-90UBADE/288(/W00"dNO"oIWBPEdE//:SARY WOy POPEojumod



32 Journal of the European Economic Association

Ferretti, Luca, Chris Wymant, Michelle Kendall, Lele Zhao, Anel Nurtay, Lucie Abeler-Dorner,
Michael Parker, David Bonsall, and Christophe Fraser (2020). “Quantifying SARS-CoV-2
Transmission Suggests Epidemic Control with Digital Contact Tracing.” Science, 368, eabb6936.

Fetzer, Thiemo and Thomas Graeber (2021). “Measuring the Scientific Effectiveness of Contact
Tracing: Evidence from a Natural Experiment.” Proceedings of the National Academy of Sciences,
118, e2100814118.

Galeotti, Andrea, Jakub Steiner, and Paolo Surico (2020). “Merit of Test: Perspective of Information
Economics.” Health Policy and Technology, 9, 575-577.

Glover, Andrew, Jonathan Heathcote, Dirk Krueger, and José-Victor Rios-Rull (2020). “Health
Versus Wealth: On the Distributional Effects of Controlling a Pandemic.” NBER Working Paper
No. 27046.

Gourinchas, Pierre-Olivier (2020). “Flattening the Pandemic and Recession Curves.” Mitigating the
COVID Economic Crisis: Act Fast and Do Whatever, 31, 57-62.

Greenwood, Jeremy, Philipp Kircher, Cezar Santos, and Michele Tertilt (2019). “An Equilibrium
Model of the African HIV/AIDS Epidemic.” Econometrica, 87, 1081-1113.

Guerrieri, Veronica, Guido Lorenzoni, Ludwig Straub, and Ivan Werning (2022). “Macroeconomic
Implications of COVID-19: Can Negative Supply Shocks Cause Demand Shortages?” American
Economic Review, 112(5), 1437-74.

Hacioglu-Hoke, Sinem, Diego R Kanzig, and Paolo Surico (2021). “The Distributional Impact of the
Pandemic.” European Economic Review, 134, 103680.

Hagedorn, Marcus and Kurt Mitman (2020). “Corona Policy According to HANK.” CEPR Discussion
Paper No. DP14694.

Hall, Robert E., Charles I. Jones, and Peter J. Klenow (2020). “Trading off Consumption and Covid-19
Deaths.” NBER Working Paper No. 27340.

Hellewell, Joel, Sam Abbott, Amy Gimma, Nikos I. Bosse, Christopher I. Jarvis, Timothy W. Russell,
James D. Munday, Adam J. Kucharski, W. John Edmunds, Fiona Sun, Sebastian Funk, Rosalind
M. Eggo, Stefan Flasche, Billy J. Quilty, Nicholas Davies, Yang Liu, Samuel Joseph Clifford, Petra
Klepac, Mark Jit, Charlie Diamond, Hamish Gibbs, and Kevin van Zandvoort (2020). “Feasibility
of Controlling COVID-19 Outbreaks by Isolation of Cases and Contacts.” The Lancet Global
Health, 8, e488—e496.

Hornstein, Andreas (2022). “Quarantine, Contact Tracing, and Testing: Implications of an Augmented
SEIR Model.” The BE Journal of Macroeconomics, 22, 53—88.

Hortagsu, Ali, Jiarui Liu, and Timothy Schwieg (2021). “Estimating the Fraction of Unreported
Infections in Epidemics with a Known Epicenter: An Application to Covid-19.” Journal of
Econometrics, 220, 106—129.

Iverson, Terrence, Larry Karp, and Alessandro Peri (2022). “Optimal Social Distancing and the
Economics of Uncertain Vaccine Arrival.” Journal of Public Economic Theory, 24, 1071-1100.

Kaplan, Greg, Benjamin Moll, and Gianluca L Violante (2020). “The Great Lockdown and the Big
Stimulus: Tracing the Pandemic Possibility Frontier for the US.” NBER Working Paper No.
27794.

Kermack, William Ogilvy and Anderson G. McKendrick (1927). “A Contribution to the Mathematical
theory of Epidemics.” Proceedings of the Royal Society of London A, 115, 700-721.

Krueger, Dirk, Harald Uhlig, and Taojun Xie (2022). “Macroeconomic Dynamics and Reallocation
in an Epidemic: Evaluating the ‘Swedish Solution’.” Economic Policy, 37, 341-398.

Lee, Sang Yoon Tim, Minsung Park, and Yongseok Shin (2021). “Hit Harder, Recover Slower?
Unequal Employment Effects of the Covid-19 Shock.” NBER Working Paper No. 28354.

Li, Qun, Xuhua Guan, Peng Wu, Xiaoye Wang, Lei Zhou, Yeqing Tong, Ruiqi Ren, Kathy SM Leung,
Eric HY Lau Jessica Y Wong, et al. (2020). “Early Transmission Dynamics in Wuhan, China, of
Novel Coronavirus—Infected Pneumonia.” New England Journal of Medicine, 382, 1199-1207.

Loertscher, Simon and Ellen V. Muir (2021). “Road to Recovery: Managing an Epidemic.” Journal
of Mathematical Economics, 93, 102482.

Mitman, Kurt and Stanislav Rabinovich (2021). “Whether, When and How to Extend Unemployment
Benefits: Theory and Application to COVID-19.” Journal of Public Economics, 200, 104447.

€20 1snBny gz U0 Jasn urepNNpuBIS @n A 0/8250./€10PEAESRI/EE0 L 0 L/IOP/SI0NIE-90UBADE/288(/W00"dNO"oIWBPEdE//:SARY WOy POPEojumod



Melosi and Rottner Pandemic Recessions and Contact Tracing 33

Moser, Christian A. and Pierre Yared (2022). “Pandemic Lockdown: The Role of Government
Commitment.” Review of Economic Dynamics, 46, 27-50.

Parran, Thomas (1937). Shadow on the Land: Syphilis. Reynal and Hitchcock.

Piguillem, Facundo and Liyan Shi (2022). “Optimal COVID-19 Quarantine and Testing Policies.”
The Economic Journal, 132, 2534-2562.

Pung, Rachael, Calvin J. Chiew, Barnaby E. Young, Sarah Chin, Mark I. C. Chen, Hannah E.
Clapham, Alex R. Cook, Sebastian Maurer-Stroh, Matthias P.H.S. Toh, Cuigin Poh, Mabel Low,
Joshua Lum, Valerie T. J. Koh, Tze M. Mak, Lin Cui, Raymond V. T. P. Lin, Derrick Heng,
Yee-Shin Leo, David C. Lye, and Vernon J. M. Lee (2020). “Investigation of Three Clusters of
COVID-19 in Singapore: Implications for Surveillance and Response Measures.” The Lancet,
395, 1039-1046.

Romer, Paul (2020). “How to Re-Start the Economy after COVID-19.” Online Lecture for the
Bendheim Center for Finance at Princeton University, 3 April. https://bcf.princeton.edu/events/
paul-romer-on-how-to-re-start-the-economy-after-covid-19/ (accessed March 13, 2023).

World Health Organization (2020). “Report of the WHO-China Joint Missionon Coronavirus
Disease 2019 (COVID-19).” https://www.who.int/docs/default-source/coronaviruse/who-china-
joint-mission-on-covid-19-final-report.pdf (accessed March 13, 2023).

Supplementary Material

Supplementary data are available at JEEA online.

€20 1snBny gz U0 Jasn urepNNpuBIS @n A 0/8250./€10PEAESRI/EE0 L 0 L/IOP/SI0NIE-90UBADE/288(/W00"dNO"oIWBPEdE//:SARY WOy POPEojumod


https://bcf.princeton.edu/events/paul-romer-on-how-to-re-start-the-economy-after-covid-19/
https://bcf.princeton.edu/events/paul-romer-on-how-to-re-start-the-economy-after-covid-19/
https://www.who.int/docs/default-source/coronaviruse/who-china-joint-mission-on-covid-19-final-report.pdf
https://www.who.int/docs/default-source/coronaviruse/who-china-joint-mission-on-covid-19-final-report.pdf
https://academic.oup.com/jeea/article-lookup/doi/10.1093/jeea/jvad013#supplementary-data

